

DOCUMENT 169-04

 MENT)

DATA REDUCTION AND COMPUTER

COMMON RANGE ARCHITECTURE OBJECT MODEL

 (SUPPLE

 GROUP

APPROVAL PROCESS INVESTIGATION

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

WHITE SANDS MISSILE RANGE

YU D
DUGWAY PROVING GROUND

NA R
E

NAVAL AIR WARFARE CENTER WEAPONS DIVISION

NAV RT

NAVAL UND , KEYPORT

30TH SPACE WING

AIR FOR ENTER

ARNOLD ENG NT CENTER

U

NATIONAL NUCLEAR SECURITY ADMINISTRATION (NEVADA)

REAGAN TEST SITE
MA PROVING GROUN

ABERDEEN TEST CENTER
TIONAL TRAINING CENTE

LECTRONIC PROVING GROUND

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION
AL UNDERSEA WARFARE CENTER DIVISION, NEWPO

PACIFIC MISSILE RANGE FACILITY
ERSEA WARFARE CENTER DIVISION

45TH SPACE WING
CE FLIGHT TEST C

AIR ARMAMENT CENTER
AIR WARFARE CENTER
INEERING DEVELOPME

BARRY M. GOLDWATER RANGE
TAH TEST AND TRAINING RANGE

DISTRIBUTION IS UNLIMITED

This page intentionally left blank.

DOCUMENT 169-04
(SUPPLEMENT)

COMMON RANGE ARCHITECTURE OBJECT MODEL
APPROVAL PROCESS INVESTIGATION

NOVEMBER 2004

Prepared by

DATA REDUCTION AND COMPUTER GROUP (DR&CG)
RANGE COMMANDERS COUNCIL

Published by

Secretariat
Range Commanders Council

U.S. Army White Sands Missile Range,
New Mexico 88002-5110

THIS DOCUMENT IS AVAILABLE ON THE

RANGE COMMANDERS WEBSITE AT
http://jcs.mil/RCC

This page intentionally left blank.

TABLE OF CONTENTS

LIST OF APPENDIX FIGURES ... iv

PREFACE...v

ACRONYMS... vii

CHAPTER 1: EXECUTIVE SUMMARY.. 1-1

CHAPTER 2: DATA REDUCTION TASK DR-31 BREAKDOWN................................... 2-1
2.1 The Need For An Object Model (OM) Standardization Process................................. 2-1
2.2 DR-31 Effort: Task 1 and Task 2 Defined... 2-1

CHAPTER 3: TASK 2: DEVELOP PROCESS TO STORE, REVIEW, MODIFY, AND
MANAGE OBJECT MODELS.. 3-1

3.1 Background and Approach .. 3-1
3.2 Technology Background.. 3-1
3.3 Deliverables For Task 2 ... 3-13
3.4 Prototype On-Line OM Submission Process ... 3-15

APPENDIX A: METADATA FIELDS.. A-1

APPENDIX B: FOUNDATION INITIATIVE 2010 USE CASE TEMPLATES................B-1

APPENDIX C: FI 2010 TENA USE CASE INSTRUCTIONS.. C-1
1.1 Introduction..C-1
1.2 Use Case Template Instructions...C-2

APPENDIX D: EXAMPLE RADAR USE CASE... D-1

Bibliography

 iii

LIST OF FIGURES

Figure 3-1. Use Case representation in UML...3-5
Figure 3-2. Actor representation in UML...3-5
Figure 3-3. Class diagram for the player object. ..3-6
Figure 3-4. Inheritance. ..3-7
Figure 3-5. Abstraction...3-8
Figure 3-6. Composition...3-8
Figure 3-7. Sequence diagram. ...3-9
Figure 3-8. Deployment diagram..3-10
Figure 3-9. The Developmental Test Command (DTC) integration level hierarchy........................3-11
Figure 3-10. TENA metamodel. ...3-12
Figure 3-11. HLA metamodel based on the Object Model template..3-13
Figure 3-12. Website home page. ...3-16
Figure 3-13. Website login. ..3-16
Figure 3-14. Object Model submission. ...3-17
Figure 3-15. Object Model submission - completed. ...3-18
Figure 3-16. DR&CG Chair login. ...3-18
Figure 3-17. Review team created by Chair. ..3-19
Figure 3-18. Review team created by Chair - Completed. ...3-19
Figure 3-19. Review team login. ..3-20
Figure 3-20. Review team comment...3-20
Figure 3-21. Review team comment – completed. ...3-21
Figure 3-22. Working group creation by chair. ..3-22
Figure 3-23. Working group creation by Chair - completed ..3-22
Figure 3-24. Working group login..3-23
Figure 3-25. Working group choices. ...3-23
Figure 3-26. Working group comments. ..3-24
Figure 3-27. Working group acceptance of topic. ..3-25
Figure 3-28. Review Team monitoring working group status..3-25
Figure 3-29. DR&CG Chair acceptance...3-26

LIST OF APPENDIX FIGURES

Figure B-1. TENA Use Case basic information... B-1
Figure B-2. TENA Applications Worksheet. ... B-2
Figure B-3. Events Worksheet. .. B-2
Figure B-4. Information Flow Worksheet. ... B-3
Figure B-5. Object Model Worksheet. ... B-3
Figure B-6. Other Information Worksheet. .. B-4
Figure C-1. The Requirements Analysis Process for the TENA Middleware Prototype. C-1
Figure C-2. Connectivity diagram example. .. C-4
Figure D-1. Example radar Use Case (basic information). ..D-1
Figure D-2: Example radar Use Case (TENA applications)...D-2
Figure D-3. Example radar Use Case (basic course of events). ...D-2
Figure D-4. Example radar Use Case (information flows)...D-2
Figure D-5. Example radar Use Case (Object Model information)..D-3
Figure D-6. Example radar Use Case (other relevant information)..D-4

 iv

PREFACE

The Range Commanders Council (RCC) Data Reduction and Computer Group (DR&CG)
sponsored the development and publication of this document. This document represents the
release of Task 2 of the DR&CG study effort DR-31, “Common Range Architecture Approval
Process Investigation.” The DR&CG developed this document as a supplement to Document
169-04 to provide the reader with detailed guidelines for developing Object Models (OM). The
goal is for consistency to be achieved in developing OM standards throughout the Department of
Defense (DoD).

The primary contributors to this report are shown below.

Author: Mr. Kurt Lessmann
Spring City Solutions, Inc.
106 Twin Island Circle
Madison, AL 35758
E-mail: klessmann@springcitysolutions.com

Mr. David Browning
Data Reduction And Computer Group (DR&CG), Associate Member
Representing: Redstone Technical Test Center (CSTE-DTC-RT-F-FL)
Redstone Arsenal, AL 35898-8052
E-Mail: dbrowning@rttc.army.mil

 v

mailto:klessmann@springcitysolutions.com
mailto:dbrowning@rttc.army.mil

This page intentionally left blank.

 vi

ACRONYMS

ABBREVIATIONS TERMS

C++ An Object Oriented computer-programming language based on the

C language
C A powerful and flexible computer programming language that can

be used for a variety of applications, from business to engineering
programs.

COTS Commercial off the shelf
CRAC Common Range Architecture Committee
CTEIP Central Test and Evaluation Investment Program
DAT Development Advisory Team
DR&CG Data Reduction and Computer Group
DoD Department of Defense
DR-31 Identifies Data Reduction and Computer Group Task Number 31
DTC Developmental Test Command (DTC)
FI2010 Foundation Initiative 2010
FIPMO Foundation Initiative 2010 Project Management Office
ILH Integration Level Hierarchy
JPEG Joint Photographic Experts Group
OM Object Model
OMG Object Management Group
OO Object Oriented
OOP Object Oriented Programming
OS Operating System
POC Point of Contact
RCC Range Commanders Council
SDO Stateful distributed object
TENA Test and Training Enabling Architecture
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

 vii

This page intentionally left blank.

 viii

CHAPTER 1

EXECUTIVE SUMMARY

The charter for the Range Commanders Council (RCC) Data Reduction and Computer
Group (DR&CG), Common Range Architecture Committee (CRAC), includes the evaluation of
proposed RCC architectural standards as well as the configuration management and distribution
of candidate and accepted standards.

The Central Test and Evaluation Investment Program (CTEIP) Foundation Initiative 2010
(FI2010) project has developed the Test and Training Enabling Architecture (TENA) to support
test and training range interoperability. As part of the TENA objective, the FI2010 project will
be offering proposed architectural standards to the RCC for ratification and management. The
first offering from the project will be the common Object Models (OM) being produced and
utilized within the TENA architecture. A pathfinder project was established to articulate the
issues, provide a process for Object Model standardization, and prepare a guideline for
standardization. This pathfinder project is known as the RCC task DR-31 effort, “Common
Range Architecture Object Model Approval Process Investigation.”

This document defines the detailed process that the DR&CG will use to store, review,

modify, and manage the Object Models as they progress through the standardization process
defined in Task 1. This document addresses Task 2, which was established to provide the
detailed data management definitions and supporting technologies necessary to properly manage
the submission, review and maintenance of proposed Object Models.

This documents presents the findings of Spring City Solutions, Inc in support of DR-31
Task 2 with the following subtasks:

a. Develop draft formats that should be used for Object Model submission to the RCC.
b. Develop draft formats for the distributed and archived Object Models.
c. Develop draft process by which Object Models are submitted, updated, distributed,

reviewed, modified, and archived.

The deliverable information for subtask a and subtask b is found: Chapter 3,

paragraph 3.2, and paragraph 3.3. Subtask c deliverable information is found in Chapter 3,
paragraph 3.4.

 1-1

This page intentionally left blank.

 1-2

CHAPTER 2

DATA REDUCTION TASK DR-31 BREAKDOWN

2.1 The Need For An Object Model (OM) Standardization Process

There are currently many activities that strive to enable interoperability between ranges
and range resources. Therefore, a significant portion of these activities support the
standardization of the data passed between the ranges. In addition, the architectures developed to
support range interoperability, such as the Test and Training Enabling Architecture (TENA),
have adopted an Object Oriented (OO) approach. When OO based software is used in
conjunction with data standardization, a notion of Object Model (OM) is presented. An OM is
the interface to a given system that describes its data and functional capabilities. In other words,
it’s the “contract” that must be enforced to support interoperability. The RCC task DR-31,
Common Range Architecture Object Model Approval Process Investigation, was initiated to
address concerns regarding the process required to standardize proposed Object Models.

2.2 DR-31 Effort: Task 1 and Task 2 Defined

The DR-31 effort was established to support two main tasks:

a. Task 1 - Develop the initial high-level notional process by which the RCC in general,
and the DR&CG in particular, should standardize Object Models.

b. Task 2 - Develop the high-level notional process that the RCC could store, review,

modify, and manage the Object Models as they progress through the standardization process
defined in Task 1.

2.2.1 Task 1 Deliverables. For Task 1, the primary process deliverables are in shown in
Chapter 3 of Document 169-04, Common Range Architecture Object Model Approval Process
Investigation. The primary deliverables include guidelines as to when a candidate OM should be
reviewed, a draft process for review by Object Model experts, and a draft process for revision
and final approval of candidate Object Models. Additional deliverables include tutorial and
training materials on software architectures and Object Oriented concepts.

2.2.2 Task 2 Deliverables. As Task 1 was established to define an over-arching OM
submission process, Task 2 was established to provide the detailed data management definitions
and supporting technologies necessary to properly manage the submission, review, and
maintenance of proposed OMs. The deliverables as set forth by DR-31 Task 2 are contained in
the remaining portions of this document, including:

a. Draft formats that should be used for OM submission to the RCC groups
b. Draft formats for the distributed and archived Object Models
c. Draft process by which Object Models are submitted, updated, distributed, reviewed,

modified and archived

 2-1

This page intentionally left blank.

 2-2

CHAPTER 3

TASK 2: DEVELOP PROCESS TO STORE, REVIEW, MODIFY, AND MANAGE
OBJECT MODELS

3.1 Background and Approach

The deliverable items of the DR-31 effort were outlined in paragraph 2.2.2 above. This
chapter documents the findings of Spring City Solutions, Inc., in support of DR-31, Task 2. The
following three sections provide the information necessary to fulfill the deliverables of Task 2.

a. Paragraph 3.2 defines terms and technologies required to discuss the requirements

and proposed solution.
b. Paragraph 3.3 presents the deliverables for Task 2.
c. Paragraph 3.4 presents an example implementation of the process as defined in the

DR-31 Task 1 and the formats/process as defined in DR-31 Task 2.

3.2 Technology Background

As with any technology-based area of interest, there often is an underlying level of
confusion on the terminology used to define the technology. Therefore, several terms will be
defined in the following sections to present a baseline of definitions. This information baseline
will enable a common understanding of terms, and thereby provide a common understanding of
the technology.

3.2.1 Object Oriented Programming (OOP). Fundamentally, the use of OOP combines both
the data and the functions that operate on that data into a single unit, called an object. In many
cases the term behavior is interchangeable with the concept of object functions that operate on
the data. As a general rule, objects are defined when the software program must represent both
data and behavior of something in the real world.

An Object Oriented (OO) program is basically a collection of objects that interact with

each other to provide a function or capability. To illustrate this concept, let’s consider a program
that represents a baseball team. For the program to represent a real baseball team, at a minimum
there needs to be representations of the players on the baseball team. These representations are
called objects, that have been named “Player,” and each Player object has data and behavior.

The data stored within an object are referred to as attributes in OOP terminology. In our

Player objects, they would need attributes that represent the real-life player attributes. Potential
attributes defined for the Player object might be position, battingAverage, onBasePercentage,
number, and other characteristics of the actual player.

The behavior of an object is the functionality that the object represents. In OOP

terminology, the object behavior is represented by “methods.” A method may be invoked, or
executed, by other objects by providing the data that the method needs to execute the method.
This data being passed to the method are called parameters. If the method passes data back after
executing the method, the type of data being returned must be specified and is called the return

3-1

DBrowning
According to the diagram, all proposed standards go to the review team, there is no reject for not meeting guidelines.

type. In the Player example, a method would be StealBase, the parameter would be baseNumber,
and the return type would be Boolean for true or false.

Another OOP term that needs to be addressed is class. A class is a template, or blueprint,

of an object. A good way to describe the concept is by using the construction of a building as an
analogy. Before a general contractor starts construction on a building, he needs a set of
blueprints to construct the building so that it meets the dimensions and behavior of the owners.
Likewise, the software developer needs a set of plans before an object can be created in a
program. The class definitions come together to form the required set of plans. Therefore, a
class is to a software developer as a blueprint is to a general contractor.

Inheritance is an OOP term that represents the ability of a class to reuse or inherit the

attributes and methods of another class. This inheritance allows a developer to create a brand
new type of class that is more specialized than the “base” class. For example, since all baseball
players have the common characteristic of being human; we could therefore create a super class
called “Human” with attributes like age, weight, sex and methods like run, walk, and sit. The
sub-class Player could inherit from Human and thereby contain all the attributes and methods
found in the Human class. The Player sub-class would have all the attributes needed to
characterize a particular human as a baseball player. This type of relationship is an “IS-A”
relationship (the Player is a Human). An “IS-A” relationship, or inheritance, signifies a very
tight coupling meaning that the player MUST BE a Human.

Abstraction is a very powerful concept that allows additional sub-classes to be added

quite easily. For instance, say you wanted to add “Coach” class as a sub-class to the super class
Human. The Coach class would inherit all the elements of Human, but the Coach class would
have additional attributes and methods that the Human and Player classes do not have. For
example the Coach class could have a method called “sendStealBaseSignal” with a return type of
void.

Interestingly, the class designer now must decide if the class Coach should be a sub-class

to Human or a sub-class to Player, because both could be true. This example situation is raised
to emphasize two points:

a. Abstraction is multi-level.
b. Although a person grasps OO concepts, he may or may not be able to design a good

OO system

Composition refers to one object containing additional object(s). For example, a Player
object may have a Uniform, Glove, and Bat objects. This type of relationship is called a “HAS-
A” relationship because the Player HAS-A Glove, Bat and Uniform. But the Player may exist
without the composed objects Glove, Bat, and Uniform.

While it is beyond the scope of this document to fully explain OOP terminology and

skills, the previous sections provide the reader with enough background material to understand
the necessary concepts.

3-2

3.2.2 Object Model definition. While the previous section provided the basics of OOP, the
term “Object Model” was never mentioned. The term Object Model is actually somewhat of a
misnomer that has been used for several years within the modeling and simulation (M&S)
community. Unfortunately, it has been adopted as a pseudo-standard definition within the
community. To adopt OOP terminology, an OM is the class definition(s) of a particular software
program. The OM defines the data and behavior of a particular object in question and thereby
making it a “contract” to allow communication with an external system.

The term “object,” as mentioned before, is defined in Object Oriented terminology as an

instance of a class. Before an instance of the class in a software application can be created, the
software developer needs to understand how the class is defined. The developer takes the
definition of class and creates an object based on that class. The newly defined object then
supports the data and behavior as defined by the class definition.

The term “model,” can have different meanings to different people. If several people are

asked what the term “model” means to them, the responses may be like the following:

a. A plastic toy that is put together with plastic glue.
b. A 3-Dimentional synthetic representation of a live entity that is used in real-time

graphics.
c. A simple software algorithm.

Note: In OOP constructs, a model is used to designate a diagram, template, or layout.

In the above paragraphs, the term “class” was used to refer to a template, or definition, of

the object to be instantiated (i.e. created) and the term “model” was used to refer to a diagram.
With OO terminology, a more accurate term for “Object Model,” should really be “class
diagram.” For the remainder of this document, the term “Object Model” should be thought of as
a class diagram. The following paragraphs describe standard methodologies and techniques for
defining and presenting OMs.

3.2.3 Representing Object Oriented systems. When the author of a C++ textbook from 10
years ago presented new OOP definitions and techniques, he often used C++ syntax to represent
things like classes, methods, and attributes. The new user found the syntax difficult to use
because the author was using C++ before the user knew C++. To counteract this difficulty, some
authors developed a custom set of graphical “boxes” to represent classes and a set of arrows to
represent relationships between the classes.

As OOP has become the accepted software design and development paradigm, several
organizations have been working very diligently to formalize the process to describe, design, and
develop software systems. For example, the Object Management Group (OMG) has been
recognized as the world-leading organization that manages standards for interoperability between
applications. From the OMG website, the OMG describes itself as “…. an open membership,
not-for-profit consortium that produces and maintains computer industry specifications for
interoperable enterprise applications. Our membership includes virtually every large company in

3-3

the computer industry, and hundreds of smaller ones. Most of the companies that shape
enterprise and Internet computing today are represented on our Board of Directors.”

One of the technologies the OMG has standardized is called the Unified Modeling

Language (UML). The UML is a defined process that allows software developers and system
architects to visualize, specify, construct, and document software systems. The UML is very
well defined and documented with a formal specification of the “language,” or process. This
powerful concept enables a standardized process for developing:

a. Diagrams that describe Object Oriented (OO) information such as class and object

diagrams. These diagrams illustrate the static structure and relationship between
objects in a system.

b. Interaction and activity diagrams to convey the dynamic behavior of objects in the
system. The diagrams may also convey messages between the objects based on
certain events or happenings.

c. Use Case diagrams to ensure user/customer requirements are well documented and
well understood by the system development team.

d. Deployment diagrams to present the use of the software in a particular environment.

While the OMG doesn’t produce UML modeling tools, it does produce, standardize, and
manage the UML specifications. These specifications are supported by Commercial Off The
Shelf (COTS) UML tool developers like IBM Rational, Borland, No Magic, and Objecteering.
Due to the varying degrees of adoption and implementation of the UML standards, data
interchange problems sometimes exist between UML modeling tools.

Because there is now a technology called UML, the question arises as to how the UML

technology should be used for standard OM submissions and definitions. UML uses a notation
of Views and Diagrams to represent the system being modeled. Because there are several
different UML views and many different UML diagrams, the following paragraphs address how
several proposed UML diagrams should be used to not only define the proposed OM, but also to
present the information regarding the definition of the OM.

3.2.4 UML diagrams. The features inherent in UML make it very powerful by allowing
customers, managers, and software developers to collaborate on a design and document all
aspects of the software system in a standardized way. UML diagrams have been conceived to
enable information flow by presenting views in class, object, Use Case, state machine, sequence,
communication, timing, interaction overview, activity, component and deployment diagrams. In
the following sections, this report will focus on the following four critical UML diagrams needed
to ensure that OMs are generated and presented in a standard acceptable definition.

a. Use Case diagrams - Provides a graphical representation of the functionality needed.
b. Class diagrams - Provides a graphical representation of the OM.
c. Sequence diagrams - Provides an understanding of the sequence of events and the

data flow between objects.
d. Deployment diagrams - Provides a graphical representation of the physical

configuration of the hardware.

3-4

3-5

3.2.4.1 Use Case diagrams. A Use Case diagram can be thought of as a package of information,
typically presented in multiple diagrams, which describes what a system does, or should do, to
benefit the stakeholder. The stakeholder can be thought of as the customer, the user, or the
benefactor, of the software system being developed. The Use Case diagrams focus the
overwhelming amount of reference data into a refined, concise information package that
represents the intended functionality of the software system. This Use Case information is then
utilized for discussions between the stakeholder, the software developer, and the system architect
to define the requirements of the desired software system so that all understand and agree.

 A Use Case model defined in UML notation is described by a number of Use Case

diagrams. The Use Case diagrams contain model elements for the system, the actors, and the
Use Cases and also depict relationships between the elements. The potentially confusing aspect
here is that a Use Case defining a system will probably contain several “smaller” Use Cases. In
UML, a Use Case is defined using an ellipsoid (see Figure 3-1) and contains a title that defines
the activity/requirement of the Use Case. For instance a Use Case may be called “Batting
Practice” that is a component of a “Baseball” Use Case.

Figure 3-1. Use Case representation in UML.

An “actor” is defined in UML as a “role” or a classifier in the Use Case. The name of the

actor portrays the role that the actor represents. Each actor must have some role, or association,
with at least one Use Case. If there is an actor without an association to a Use Case, then that
actor is no longer needed. An actor always initiates Use Cases and Use Cases always provide
value to the actor. The “stickman” diagram in Figure 3-2 represents an actor.

Figure 3-2. Actor representation in UML.

A description of the Use Case is provided in text, and is a simple explanation regarding:

a. The objective of the Use Case.
b. How the Use Case and the actors interact.
c. How the Use Case is initiated.
d. Message traffic between the actor(s) and the Use Case.
e. Value to the actor.
f. The exit criteria of the Use Case.

3.2.4.2 Class diagrams. As the name implies, UML is a modeling language complete with
rules, notations, and diagrams. UML provides the user a methodology to represent the design of
the system and also to design a software system. As mentioned previously, an Object Model is
equal to that of a Class Diagram in UML notation. Unfortunately, presenting the entire UML
class diagram notation tutorial is beyond the scope of this effort. However, the following
sections will provide the requirements for understanding UML class diagram notation based on
the Player example.

In UML, a class diagram is basically a rectangle with three horizontal lines separating the

rectangle into three areas. Each area in the rectangle represents the three distinct parts of a class:
the class name, attributes, and methods. The components of Figure 3-3 are as follows:

a. Class Name - Top section contains the class name, “Player”
b. Attributes - The second section contains the attributes and their associated data types

such as attribute “position” and data type “short.”
c. Methods - The third section contains the methods to include the arguments and return

types such as method name “stealBase”, with argument “baseNumber”, data type
“short”, and type of return method “Boolean”.

Figure 3-3. Class diagram for the Player object.

3-6

To define inheritance, a line is drawn from the sub-class to a super class with an open
triangle towards the super class. Figure 3-4 represents inheritance.

Figure 3-4. Inheritance.

Abstraction is defined as a relationship between two descriptions of the same thing.

Figure 3-5 graphically depicts this concept as both the Coach and Player are of type Human;
therefore, a coach “IS-A” Human. Figure 3-6 denotes the composition by having the closed
diamond on the class that contains the other class. It follows that Figure 3-6 depicts a Player
class containing Bat, Glove, and Uniform classes, and a coach HAS-A uniform.

3-7

Figure 3-5. Abstraction.

Figure 3-6. Composition.

3-8

3.2.4.3 Sequence diagrams. A sequence diagram is an interaction diagram that depicts
information flow between software objects, or instance of a class, in a sequenced manner. The
information sent between objects is referred to as messages and are depicted by straight lines
with arrows to denote direction of message flow. The interaction(s) between objects is shown as
a discrete event during the execution of the system. The diagram is configured such that the
objects are listed on the top row with vertical lines drawn to the bottom of the diagram under
each object. The vertical lines are sometime referred to as lifelines as the execution time
progresses from the top to the bottom of the diagram. To summarize, the sequence diagram is a
dynamic collaboration diagram that represents the information flow between objects in a
sequenced manner. Figure 3-7 is a simple sequence diagram.

Figure 3-7. Sequence diagram.

3.2.4.4 Deployment diagrams. A deployment diagram represents the configuration of the
system’s hardware and software components, which are referred to as nodes. This type of
diagram contains the connections between the nodes and a description of the connections. The
deployment diagram is diagram is useful in presenting the envisioned system configuration and
is helpful in understanding potential constraints levied on the system developers. Figure 3-8 is a
simple deployment diagram.

3-9

Figure 3-8. Deployment diagram.

3.2.5 Object Model metadata. Metadata is data that is associated with an OM that puts the OM
definition into context. Examples of OM metadata could be:

a. OM Name - XYZradar
b. Point of contact information - Mr. John Doe with phone, email, organization, and

other information
c. Use Case Name - Range XYZ radar utilization
d. Range resource represented - XYZ radar system
e. Fidelity of the application - low, medium, or high
f. Purpose of OM - to develop an interface to XYZ radar for other ranges to utilize XYZ

radar

Figure 3-9 depicts the Developmental Test Command (DTC) Integrated Level Hierarchy

(ILH) that has been standardized as the metadata for the Virtual Proving Ground (VPG)
program. The ILH was developed at the Redstone Technical Test Center (RTTC) and is
currently the standard data representation schema used at DTC ranges. While this extensive
schema is not necessary for our metadata definition, it is presented here to reinforce the
importance of maintaining a consistent set of information that describes the asset in question.

3-10

Figure 3-9. The Developmental Test Command (DTC) integration level hierarchy.

3.2.6 Object Model metamodel. A metamodel is a “model that defines a model” and can be
considered OM metadata. While this definition may seem to be trivial and almost useless, it is in
fact very significant to OM discussions. Another way of defining metamodel is by stating that a
metamodel describes the capability of another model. The following are examples of
metamodels in use.

a. C++ metamodel - Classes, structs, multiple inheritance, composition, generics,

functions, methods, operators, fundamental data types, exceptions, etc.
b. Java metamodel - Classes, Interfaces, and exceptions. Doesn’t support structs,

functions, generics or multiple inheritance
c. Common Object Request Broker Architecture (CORBA) metamodel - Interfaces,

structs, valuetypes, sequences, enumerations, and so forth (doesn’t support classes).

3-11

d. High Level Architecture (HLA) metamodel - Classes (as objects), interactions,
attributes, single inheritance. Doesn’t support interfaces, composition, functions,
methods, etc.

One example of a metamodel is the Test and Training Enabling Architecture (TENA)

metamodel. The TENA metamodel (see Figure 3-10 directly below) will support classes, local
classes, inheritance, composition, interfaces, messages, and other architectural elements.
Another metamodel, the HLA, is depicted in Figure 3-11.

Figure 3-10. TENA metamodel.

3-12

Figure 3-11. HLA metamodel based on the Object Model template.

The reason the metamodel definition is critical is that the metamodel lists all the features
of the over-arching system or architecture that the software was designed to use. For example, if
an OM had been developed using the HLA metamodel, the OM would never contain the element
SDO Pointer because the HLA doesn’t utilize the concept of SDO Pointer. It is very important
for the RCC to understand the impact of metamodels on OM definitions. We need to ensure that
the OM being developed is compatible with the specific architecture metamodel(s) in which the
OM will be used. The Range Commanders Council must appreciate the potential conflicts with
other OMs designed with a different metamodel and therefore should adopt acceptable
metamodel(s) and require OM submissions to follow them.

3.3 Deliverables For Task 2

3.3.1 Proposed OM submission package format. When a user submits an OM to the RCC
DR&CG as a potential candidate for standardization, the submission needs to be presented in a
package. A package contains several items and is required to give the DR&CG a complete set of
information regarding the OM submission. Before an OM is accepted into the OM
standardization process, the entire package must be completed. The OM submission package
must contain:

a. The OM metadata - The metadata fields and structure must be provided to put the

OM definition and submission into context.
b. The OM - The OM must be graphically depicted using UML notation as a standard

class diagram.

3-13

c. Use Case - While in UML a Use Case is only one of many diagrams, a Use Case is
referred to herein as several UML diagrams. A Use Case is either a UML-based Use
Case model or the FI2010 Use Case template. Note: If UML diagrams are used, the
Use Case, sequence, and deployment diagrams are required.

d. Metamodel - A graphical or textual representation of the metamodel used during the
OM definition.

 Unless otherwise specified, the OM and Use Case diagrams shall be presented in the

UML Standard XML1 Metadata Interchange (XMI) 1.0 Format. This format allows for diagram
interchange between various UML tool programs. As standards evolve, it is recommended that
the DR&CG adjust this requirement to meet new standard definitions. In addition, the JPEG
format is required for quick-look capability

 The OM submission package may either be presented via e-mail to an address

designated by the DR&CG or via a DR&CG-supported on-line submission process.

 Spring City Solutions, Inc. has implemented a prototype of the OM review process as

defined by DR-31 Task 1 that includes the OM package submission process. This
implementation demonstrates the feasibility of the OM standardization process as defined by the
DR-31 Task 1 and 2 deliverables. An example of this prototype on-line OM submission and
management process is presented in paragraph 3-4 below.

3.3.1.1 Metadata. The metadata shall be filled in via the DR&CG-sponsored on-line submission
process or filled in and submitted via Microsoft Word Format. Metadata fields are defined in
Appendix A.

3.3.1.2 Object Model. The submitter shall provide the OM in JPEG and XMI format. While
the JPEG format supports a quick-look analysis, the XMI format allows the DR&CG personnel
to import the diagrams into their UML tool for more extensive investigation.

3.3.1.3 Use Cases. The OMG clearly and consistently defines the process, tools, components,
and diagrams to generate a system using UML. Therefore, a UML-based Use Case diagram, and
other supporting UML diagrams, should be acceptable as input for an OM submissions in the
XMI format. The minimum required UML diagrams for each use OM submission include:

a. Use Case diagrams.
b. Sequence diagrams.
c. Deployment diagrams.

Additional diagrams that may be included in the Use Case, but are not required, are:

d. Collaboration diagrams
e. State diagrams
f. Implementation diagrams

1 Extensible Markup Language

3-14

 However, many in the RCC community are either unaware or unable to spend the time
to fully embrace and implement the Use Case definition process. Therefore the pure UML
definition of the Use Case development process should not be the lone Use Case submission
format for OM submission to the RCC DR&CG standardization. A range-specific Use Case
format generated by the Foundation Initiative 2010 project should also be endorsed as a
submission format as it better reflects the range community terminology, process, and
communication constructs.

 Additional guidance is contained in the appendices as follows:

 Appendix B - FI2010 Use Case Templates
 Appendix C - FI2010 Use Case Instructions
 Appendix D - Example Use Case: Radar (hypothetical scenario)

3.3.1.4 Meta-model. As defined earlier, the metamodel is the model that describes the model of
the architecture, like TENA, or the single language the system was written in, like C++.
Therefore the user must, at a minimum, state the metamodel being used, but preferable provide a
graphical representation of the metamodel in JPEG format.

3.4 Prototype On-Line OM Submission Process

 As an unfunded feature, Spring City Solutions, Inc. developed an on-line OM submission
and management tool suite to provide the feasibility of the process and submission formats
defined in DR-31. While this tool is only a prototype, it demonstrates the concept of managing
OM submissions, further development of this working prototype is possible if the DR&CG
wishes to pursue this activity. A sample of the prototype system user screens can be seen at
Figures 3-12 through Figure 3-29.

Figure 3-12. Website home page
Figure 3-13. Website login
Figure 3-14. OM submission
Figure 3-15. OM submission - completed
Figure 3-16. DR&CG Chair login
Figure 3-17. Review Team created by Chair
Figure 3-18. Review Team created by Chair - completed
Figure 3-19. Review Team login
Figure 3-20. Review Team comment
Figure 3-21. Review Team comment - completed
Figure 3-22. Working Group creation by Chair
Figure 3-23. Working Group creation by Chair – completed
Figure 3-24. Working Group login
Figure 3-25. Working Group choices
Figure 3-26. Working Group comments
Figure 3-27. Working Group acceptance of topic
Figure 3-28. Review Team monitoring working group status
Figure 3-29. DR&CG Chair acceptance

3-15

RCC Object Model Standardization Proposal Process
WELCOME

Figure 3-12. Website home page.

RCC Object Model Standardization Proposal Process
LOGIN

Figure 3-13. Website login.

3-16

RCC Object Model Standardization Proposal Process
SUBMIT OM

Step 1: Object Model Package Submission

1) Object Model Name:

2) Please attach a zip file containing the files associated with this Object Model

C:\Documents and Settings
3) Insert Metadata for this OM Submission Package

Name:

Kurt Lessman
Organization:

FI2010
Mail Stop:

500 Wynn Dr Suite 314 Huntsville, AL 35816
Phone Number

256-722-7200
Fax Number:

256-722-7212

Email Address:
klessmann@springcitysolutions.com

Object Model File Name(s):

Radar

Range Object(s) Defined:
Radar

Meta-model OM Designed to Support

ENA Release 4.0

Object Names Submitted for Standardization:
Radar

Purpose of OM:

Standardize Radar

Radar

e

Figure

Submit OM Package
 3-14. Object Model sub
Brows
mission.

 3-17

RCC Object Model Standardization Proposal Process
SUBMIT OM

Object Model Submitted to the RCC Chair for processing!

>> Object Model Name: Radar
>> Package File Renamed to: Radar-TENA_Radar.zip

Figure 3-15. Object Model submission - completed.

RCC Object Model Standardization Proposal Process
DR&CG CHAIR

Figure 3-16. DR&CG Chair login.

3-18

RCC Object Model Standardization Proposal Process
DR&CG CHAIR

Figure 3-17. Review Team created by Chair.

RCC Object Model Standardization Proposal Process
DR&CG CHAIR

Figure 3-18. Review Team created by Chair - Completed.

3-19

RCC Object Model Standardization Proposal Process
REVIEW TEAM

Figure 3-19. Review Team login.

RCC Object Model Standardization Proposal Process
REVIEW TEAM

Figure 3-20. Review Team comment.

3-20

RCC Object Model Standardization Proposal Process
REVIEW TEAM

Figure 3-21. Review Team comment – completed.

3-21

RCC Object Model Standardization Proposal Process

Figure 3-22. Working group creation by Chair.

RCC Object Model Standardization Proposal Process

Figure 3-23. Working Group creation by Chair - completed

3-22

RCC Object Model Standardization Proposal Process
WORKING GROUP

Figure 3-24. Working Group login.

RCC Object Model Standardization Proposal Process
WORKING GROUP

Figure 3-25. Working Group choices.

3-23

RCC Object Model Standardization Proposal Process
WORKING GROUP

Figure 3-26. Working Group comments.

3-24

Figure 3-27. Working Group acceptance of topic.

>Radar-Tena_Radar.zip

You may:
 >> Accept this proposal and send back to Review Team for processing

Below

Add Comments to this working group

!

X

 You have accepted this Working Group proposal. You can update this
proposal so you will be logged out and returned to the home page

OK

Microsoft Internet Explorer

RCC Object Model Standardization Proposal Process
REVIEW TEAM

Figure 3-28. Review Team monitoring working group status.

3-25

RCC Object Model Standardization Proposal Process
REVIEW TEAM

Figure 3-29. DR&CG Chair acceptance.

3-26

APPENDIX A

METADATA FIELDS

The recommended metadata fields are shown below (Required = *)

 Point of Contact (POC) POC Information

o *Name
o *Organization
o *Mail stop
o *Phone number
o *Fax number
o *Email address:

Object Model (OM) Submission Information

o OM Submission Package Information
� * Submitted Zip file Name
� Version number
� *Object name(s) submitted for standardization
� *Purpose of OM - Text
� *Range Object(s) defined
� *metamodel utilized during development
� Re-use of Existing OMs

• Existing OM Name
• Submitted OM Name
• Developing Organization
• OM modifications

o OM Submission Package
� Use case file name(s)

• In FI2010 template
• UML Diagrams

� Object Model file name(s)
• Graphics file (JPEG, GIF,etc.)
• XMI file – including XMI version number

OM Definition Testing

o Range event(s) OM supported – Fill out 1 for each event
� *Customer
� *Date
� *Event Description - Text
� *Participating Locations - Text
� Network and computer configurations - Text
� Number of:

• *Range instrumentation/assets
• *live participants – Non instrumentation
• *virtual test applications

A-1

• *Constructive applications
� Number of instances of:

• *Range instrumentation/assets
• *live participants– Non instrumentation
• *virtual participants
• *Constructive participants

� Time duration of event
� Number of test runs

o General Event Comments
General Submission Comments

A-2

APPENDIX B

FOUNDATION INITIATIVE 2010 USE CASE TEMPLATES

 The following Use Case “Worksheets” are provided below as:

 Figure B-1 - Test and Training Enabling Architecture (TENA) Use Case basic

information
 Figure B-2 - TENA applications
 Figure B-3 - Events
 Figure B-4 - Information flow
 Figure B-5 - Object Model
 Figure B-6 - Other relevant information

1 .1.1 TENA Us er Name * 1 .1.6 B ackg round*
1 .1.2 Us e Cas e Name *

1 .1.3 Bas ic/Complex *
1 .1.4 Cus tomer

1 .1.7 Us e Cas e Overview*:

1 .1.6 Key Words

1.1 TENA Use Case Basic Information

s tarred (*) blocks are required

1 .1.5 Other Us e Cas es
Referred to

Figure B-1. TENA Use Case basic information.

B-1

1.2.1
ID *

1.2.2
Appli cati on

Name *

1.2.3
Programmi ng

Language *

1.2.4
Compi ler *

1.2.5
Threading

Info *
Name CPU * RAM

(MB) *

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1.2.10
S tan d ard s

(HLA,
S ED RIS ,

e t c .)

1.2 TENA Applications

1.2.10
Connectivity Diagram *

1.2.11
Ge o g ra p hic

Lo cat io n

Application Information *
1.2.7

Computer Type *
1.2.12
Notes

1.2.8
Network

Connecti on
(Type &

Speed) *

1.2.6
Operati ng

Sys tem
(Type &

Ve rs io n) *

1.2.9
Leg acy

Ap p s

Figure B-2. TENA Applications Worksheet.

Figure B-3. Events Worksheet.

B-2

Figure B-4. Information Flow Worksheet.

Figure B-5. Object Model Worksheet.

B-3

N ote # N o te Comment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1.7 O ther Relevant Infor mation as Require d - O ptional

Figure B-6. Other Information Worksheet.

B-4

APPENDIX C

FI 2010 TENA USE CASE INSTRUCTIONS

1.1 Introduction

TENA Use Cases are intended to help the TENA Middleware Developer understand the
Range Community’s requirements for creating the TENA Middleware. The TENA Use Case
Template is contained in a series of Excel spreadsheets. This Excel package contains both the
templates for defining a Use Case and for executing the Use Case Evaluation Process. This
section presents the instructions for defining Use Cases such that the maximum amount of
pertinent information is conveyed systematically. Paragraph 1.2 below provides guidance on
completing the evaluation templates as part of the Use Case Evaluation Process.

1.1.1 Requirements Analysis Process. Because the process for analyzing TENA requirements
is very iterative, it is difficult to show cleanly on a diagram. However, Figure C-1 is provided in
an attempt to give the reader a good overview of the process.

Draft Use Cases
(Basic or
Complex)

Draft Use Cases
(Basic or
Complex)

Draft Use Cases
(Basic or
Complex)

Draft Use Cases
(Basic or
Complex)

Draft Use Cases
(Basic or
Complex)

Draft Use Cases
(Basic or
Complex)

JORD

TCRD

SOO

Synthesis

Driving
Requirements

Detailed
Requirements

Refinement

Detailed
Use Cases
Detailed

Use Cases
Detailed

Use Cases
Detailed

Use Cases
Detailed

Use Cases
Formal

Use Cases
Use Cases to

Be Tested

Draft Use Cases
(Basic or
Complex)

DTCs
DAT, TENA User & IKE 2 Developer

FIPMO

Analysis
FIPMO

IKE 2 Developer

Analysis

 Use Case
 Programmatics

IKE 2 Developer

Figure C-1. The Requirements analysis process for the TENA Middleware prototype.

The goal of the current requirements analysis process is to fully understand the
requirements for TENA Middleware. These requirements include the “Driving Requirements”
which are the high level requirements specifying the essence of the system’s purpose. The
requirements also include the “Detailed Requirements” which include a list of all the TENA
Middleware functions as well as all the non-functional requirements imposed on the TENA
Middleware. Another goal is to produce a series of test cases, based on the Use Cases, in which
the TENA Middleware can be tested. Upon receipt of a Draft Use Case, the TENA Development
Advisory Team (DAT) and the TENA Middleware Developer, in consultation with the Use Case
designers (i.e., the potential TENA Users), will refine each Draft into a formal, more structured
Use Case suitable for requirements extraction and the development of the test plan. Both the
TENA User and the TENA Middleware Developer will sign off on the final version of the Use
Case. This formalization process is intended to make sure the TENA Middleware Developer
fully understands what is being presented and that the TENA User agrees with any refinements
made to the Use Case by the TENA Middleware Developer.

C-1

Use Cases can range from the very “Basic,” in that it contains a very small number of
TENA applications performing only a very few functions, to the more “Complex,” containing
more than a few applications, operating over an extensive period of time with a large variety of
information being interchanged. The TENA Middleware development team requires more basic
Use Cases than complex Use Cases. The complex Use Cases should (mostly) be able to be
constructed by combining the basic Use Cases.

1.1.2 Purpose of the Use Cases. There are two main purposes for the development of Use
Cases. The first purpose of the Use Cases is to educate the TENA Middleware development
team on what type of environment exists in the Range Community in which TENA applications
using TENA Middleware will be operating. The two key questions that need to be addressed in a
Use Case are:

a. What types of applications exist on the range?
b. What are the information flows between these applications?

The second purpose of developing Use Cases is to provide the Foundation Initiative 2010
Project Management Office (FIPMO) with information that can be used to test the TENA
Middleware software when it has been developed.

1.1.3 Tips for good stories. In general, there should be a large number of small basic Use
Cases. These can then be combined later into more extensive complex Use Cases that can be
used for testing. The basic Use Cases should:

a. Be small - involve only two to three systems, with only a few types of information
being exchanged.

b. Be instructive - assume the TENA Middleware development team is not
knowledgeable about range activities.

c. Include processes or problems that are both easy to do as well as difficult to do. Not
every Use Case must push the performance envelope or demonstrate an extremely
difficult function - some should tell about very basic range operations so the
development team can get a feel for those processes as well.

d. Include both processes and applications that currently exist on the range as well as
processes and applications that the users hope will be made possible with the
introduction of TENA in the next two years. There are thus two kinds of stories told
in these Use Cases (“historical fiction” and “science fiction”) depending on whether
you want to show functionality that already exists on the range that TENA
Middleware must accommodate, or whether you want to illustrate functionality not
currently possible on the range, but that TENA Middleware should address.

e. Cover a wide variety of scenarios, the more the better.

1.2 Use Case Template Instructions

The items shown in the following sub-paragraphs are important for each Use Case. The
actual format for the text of each Use Case is hyperlinked to an associated Excel spreadsheet at
Appendix D. Diagrams showing connectivity, process, and information flow (described below)
are very important and should be included in the Use Case. UML diagrams (paragraph 3.2.4

C-2

above) are best, so it is suggested that they be used, but not everyone should have to be a UML
expert to produce a good and useful Use Case. Therefore, if unfamiliar with UML, the reader is
free to use any diagramming technique with which he/she is familiar. The refinement process
will include converting non-UML diagrams into standard UML diagrams. Some information is
required and some information is optional. Required information is marked with an asterisk and
is shaded in the template. Nevertheless, if including a required item makes no sense, then the
item should be omitted. Similarly, if there is crucial information you need to convey that has no
natural place in the template, include it on the last page of the template entitled “Other relevant
information as required.”

1.2.1 Basic information. This section gives the name of the Use Case, a summary, and other
important administrative shown below. A sample spreadsheet is at Figure D-1.

a. TENA User Name - Name of the organization submitting the TENA Use Case.
b. Use Case Name - The name should be unique and descriptive.
c. Basic/Complex - State here whether this Use Case is a basic Use Case or a complex

Use Case.
d. Customer - By default this may be your range/organization, but it may be some other

range or another investment project, or it might be the range user.
e. Other Use Cases referred to - In this Section, if this Use Case is a complex Use Case,

please list all the other Use Cases out of which this Use Case is constructed.
f. Background - Describe in this section any background information about your range,

the included systems, or the processes and functions that will be implemented in the
Use Case that you think the reviewing team might need to understand the Use Case.

g. Use Case Overview - A short overview should be written in a few sentences
describing the Use Case and its primary purpose.

h. What this Use Case adds and why you are including it - These questions should be
concisely answered in this section.

1.2.2 TENA applications. This section should contain a list of the TENA applications (running
the TENA Middleware) present in the Use Case. Assume for this section that there are no extant
TENA-created tools, so include all tools you may need for these Use Cases as applications in the
list. Sometimes multiple applications run on a single computer. Please list each of these
applications separately, and include the computer information for each of them. Use the “Notes”
section to state that they share a computer. The specific TENA information requirements are
shown below. A sample spreadsheet is at Figure D-2.

a. ID - A consecutive counter for each application (e.g., 1,2,3…)
b. Application Name - The common name of the application used on your range (e.g.,

“SimDis”)
c. Programming Language - List the computer programming language or languages

used by the particular application. The most important programming language is that
language used for the reading and writing of information to the network. List this
language first. Then list any other languages that may be used (e.g., C++).

C-3

d. Compiler - List the compiler (or compilers) used to create this application (e.g.,
MVC++ 7.0). For interpreted languages (such as Visual Basic or Java), indicate the
version number of the interpreter (e.g., VB5.0, Sun JVM 2.0).

e. Threading Information - Indicate whether this application is single threaded,
multithreaded, or multi-process.

f. Operating System (OS) - Indicate which operating system (including version) this
application runs on. List multiple OSs if the application is portable between multiple
OSs. For interpreted applications that run on virtual machines that are portable
between platforms (e.g., Java applications), list the operating system that the code
actually runs on in practice on your range. An example would be Sun Solaris 8.0 for
Sparc.

g. Computer Type - What kind of computer does the application run on? List the name
of the computer (e.g., UltraSparc 180), the CPU type and speed (e.g. Dual Intel
Pentium III Xeon 1 GHz), and the amount of memory that the system has (e.g., 1GB).

h. Network Connection - Indicate the type of and speed of the network connection (or
connections) that this computer uses to communicate with other computers in the Use
Case (e.g., 100Base-T, 10MBps shared, or Switched Gigabit Ethernet).

i. Notes - Make any remarks in this area about the applications that are important to
your Use Case, but that don’t fit in anywhere else. An example of something to
include here is that two applications run on the same computer.

j. Connectivity Diagram - There should be a diagram showing all the TENA
applications and the connectivity between each. This diagram can be pasted directly
into the template or included as a separate PowerPoint or Visio diagram. A simple
non-UML example might be as shown in Figure C-2:

Flash Detector Radar

Flash Detector
Control
Application

Radar Control
Application

Range Control
Station

Remote Display
Station

Network

 Figure C-2. Connectivity diagram example.

1.2.3 Basic course of events. This section should contain a temporal description or narrative of
the events that occur during the Use Case. The information requirements are shown below. A
sample spreadsheet is at Figure D-3.

a. Action ID - A consecutive counter for each action (e.g., 1,2,3…).
b. Actions or Events - This is the meat of the Use Case and should read like a story

telling the reviewers what happens when and how and to whom. Each action in the

C-4

Use Case should be presented in its own cell. The cells expand so do not be
concerned with fitting the description into one or two lines.

c. TENA Middleware expected functionality for this action - This is an optional column.
For each action, list what you believe to be the appropriate action taken by the TENA
Middleware. How is TENA Middleware helping you make the Use Case work during
this action?

d. Process Diagram (Optional) - If it helps, there should be a process diagram, showing
system activities, causal relationships, and the progression of time.

1.2.4 Information lows. At its core, TENA Middleware is a software infrastructure that
facilitates information exchange between TENA applications. Thus, describing the type of
information flows and the direction(s) of the flows is critical in order to extract detailed
requirements from the Use Case. In this section of the template, you should list, in a quantitative
fashion, every type of information exchange or interaction that takes place in the Use Case. A
sample spreadsheet is at Figure D-4.

a. ID - A consecutive counter for each information flow (e.g., 1,2,3…).
b. Name - A descriptive name for this information flow (e.g., “radar track data”).
c. Type - Provide a description of the type of data. There are all types of data (e.g.,

streamed audio, video, telemetry, command information, position information).
Please be as descriptive as possible herein order to understand what is in the data that
is being sent. Use as much space as is required to describe the information.

d. Originating Application: Which application produces this information (cross-
referenced back to the previous table)? If multiple applications produce this type of
data, there should be multiple entries in the table (i.e., the table lists information
flows, not information types).

e. Recipient Applications - Which application or applications receive this information?
List all applications that receive the information and make sure they correspond
accurately to the applications listed in the TENA applications spreadsheet located in
Figure D-2.

f. Gateway Required - List the Gateway type required for execution of this information
flow. For example, if an HLA application is providing data for this information flow,
list “HLA Gateway.” If you are using a TENA to TENA application write TENA.

g. Size - State how large (in bytes) is one unit of the information (e.g., a 200-byte PDU).
h. Frequency - List how often this unit of information is produced (e.g., “10 Hz”, or

“intermittently,” or “once”).
i. Latency Tolerance - What are the real get-the-job-done requirements on the amount

of end-to-end latency in the delivery of this information? Please be as generous as
possible, as latency is the most critical (and thus hard to achieve) performance
requirement for the TENA MIDDLEWARE system. Make sure the needs listed here
are real mission-critical needs, not just desires (e.g., 100 ms). Also, are there any
latency variance (“jitter”) requirements on the information delivery? In other words,
you might be able to accept a large latency, say 1 second, but you may require that
each time this information is delivered, the latency is relatively close to the same
value. So in describing latency requirements, it is important to express the latency as
two numbers: a value and a variance, such as 100ms ± 10 ms.

C-5

j. Best Effort or Reliable - What type of transport mechanism is used (and is required)
for this information? Usually information is sent “Best Effort” where there are no
rock-solid guarantees that any particular unit of information gets to its intended
recipients. Sometimes, however, information needs to be sent in a reliable fashion.
In other words, this amounts to asking whether the information should be sent by
UDP or TCP. List “Best Effort” or “Reliable” in this box, with the understanding that
reliable transport may have significant performance implications.

k. Is Ordering Critical - In this box tell us whether the recipients can tolerate this
information being delivered out of time order. In large distributed systems,
sometimes messages can be delivered in a different order than they are sent. Most
software implementations can ensure that this rarely happens for quite little cost.
However, to guarantee that information is never delivered out of order is a very
difficult task with significant performance implications, but it can be done if
absolutely necessary (and the user wants to pay the performance price for it).
Indicate here whether ordering is crucial for this type of information (e.g., Yes or
No).

l. Required During Action Number - List the Action ID from Figure D-3 that
corresponds to the sending of this information.

m. Information Flow Diagram - You should include an (optional) information flow
diagram such as an N2 chart to illustrate the information flow. Each participant
should be included and all types of information between each participant should be
listed.

1.2.5 Key functionality required of TENA Middleware that this Use Case demonstrates. Each
Use Case has an explicit purpose. It is in this section that you state that purpose explicitly so that
there is no doubt in our minds what functionality or performance parameters this Use Case is
intended to convey. In addition, provide information on whether this Use Case provides
common everyday range capability, or a high-tech solution that “pushes the envelope” of what
your range/TENA could do. Identify the key requirements here so there is no ambiguity about
what is needed.

1.2.6 Object Model information. In this section of the template, please provide information on
all of the objects, or class descriptions, that will be needed to support this Use Case. You do not
need to fill in the attributes and methods for existing TENA class descriptions – just provide the
class names as reference. If modifications are needed to an existing class description, use this
template to identify the class and the attributes and/or methods that need to be modified. The
first table provides guidance on identifying new or modified attributes. The second table
provides guidance on identifying new or modified methods, or operations for this class.
Additional lines, and/or copies of this sheet can be inserted into this template as required to
handle additional class names, attributes, methods, and method parameters. A sample
spreadsheet is at Figure D-5.

1.2.7 Other relevant information. In this section of the template, please list all those critical
aspects of the Use Case not captured elsewhere. A sample spreadsheet is at Figure D-6.

C-6

APPENDIX D

EXAMPLE RADAR USE CASE

In a hypothetical example of development of an Object Model (OM) for a radar, the
screens could look something like the figures shown in this Appendix. The following figures are
shown as samples only. They are as follows:

• Figure D-1. Example radar Use Case (basic information).
• Figure D-2. Example radar Use Case (TENA applications).
• Figure D-3. Example radar Use Case (basic course of events).
• Figure D-4. Example radar Use Case (information flows).
• Figure D-5. Example radar Use Case (Object Model information).
• Figure D-6. Example radar Use Case (other relevant information).

Figure D-1. Example radar Use Case (basic information).

D-1

Figure D-2: Example radar Use Case (TENA applications).

Figure D-3. Example radar Use Case (basic course of events).

Figure D-4. Example radar Use Case (information flows).

D-2

Figure D-5. Example radar Use Case (Object Model information).

D-3

Figure D-6. Example radar Use Case (other relevant information).

D-4

BIBLIOGRAPHY

Booch, Grady, and James Rumbaugh, Ivar Jacobson. (1999). The Unified Modeling Language
User Guide. USA: Addison-Wesley.

Eriksson, Hans-Erik and David Fado, Magnus Penker, Brian Lyons. (2004). UML 2 Toolkit.

Indianapolis, IN: Wiley Publishing.

Lafore, Robert. (1995). Object-Oriented Programming in C++ Second Edition. USA: Waite

Group Press.

Weisfeld, Matt. (2000). The Object Oriented Thought Process. Indianapolis, IN: Sams

Publishing.

	EXECUTIVE SUMMARY
	DATA REDUCTION TASK DR-31 BREAKDOWN
	The Need For An Object Model (OM) Standardization Process
	DR-31 Effort: Task 1 and Task 2 Defined
	Task 2 Deliverables. As Task 1 was established to define an over-arching OM submission process, Task 2 was established to provide the detailed data management definitions and supporting technologies necessary to properly manage the submission, review, a

	TASK 2: DEVELOP PROCESS TO STORE, REVIEW, MODIFY, AND MANAGE OBJECT MODELS
	Background and Approach
	Technology Background
	3.2.1Object Oriented Programming (OOP). Fundamentally, the use of OOP combines both the data and the functions that operate on that data into a single unit, called an object. In many cases the term behavior is interchangeable with the concept of obje
	3.2.2Object Model definition. While the previous
	3.2.4 UML diagrams. The features inherent in UML make it very powerful by allowing customers, managers, and software developers to collaborate on a design and document all aspects of the software system in a standardized way. UML diagrams have been co
	3.2.4.1 Use Case diagrams. A Use Case diagram can be thought of as a package of information, typically presented in multiple diagrams, which describes what a system does, or should do, to benefit the stakeholder. The stakeholder can be thought of as t
	3.2.4.2 Class diagrams. As the name implies, UML is a modeling language complete with rules, notations, and diagrams. UML provides the user a methodology to represent the design of the system and also to design a software system. As mentioned previou
	3.2.4.4 Deployment diagrams. A deployment diagr
	3.2.5Object Model metadata. Metadata is data that is associated with an OM that puts the OM definition into context. Examples of OM metadata could be:
	3.2.6Object Model metamodel. A metamodel is a “m

	Deliverables For Task 2
	3.3.1Proposed OM submission package format. When a user submits an OM to the RCC DR&CG as a potential candidate for standardization, the submission needs to be presented in a package. A package contains several items and is required to give the DR&CG a
	Metadata. The metadata shall be filled in via the DR&CG-sponsored on-line submission process or filled in and submitted via Microsoft Word Format. Metadata fields are defined in Appendix A
	3.3.1.2 Object Model. The submitter shall provide the OM in JPEG and XMI format. While the JPEG format supports a quick-look analysis, the XMI format allows the DR&CG personnel to import the diagrams into their UML tool for more extensive investigatio
	3.3.1.3 Use Cases. The OMG clearly and consistently defines the process, tools, components, and diagrams to generate a system using UML. Therefore, a UML-based Use Case diagram, and other supporting UML diagrams, should be acceptable as input for an O
	3.3.1.4 Meta-model. As defined earlier, the metamodel is the model that describes the model of the architecture, like TENA, or the single language the system was written in, like C++. Therefore the user must, at a minimum, state the metamodel being us

	Prototype On-Line OM Submission Process

	METADATA FIELDS
	FOUNDATION INITIATIVE 2010 USE CASE TEMPLATES
	FI 2010 TENA USE CASE INSTRUCTIONS
	Introduction
	1.1.1Requirements Analysis Process. Because the process for analyzing TENA requirements is very iterative, it is difficult to show cleanly on a diagram. However, Figure C-1 is provided in an attempt to give the reader a good overview of the process.
	1.1.2Purpose of the Use Cases. There are two main purposes for the development of Use Cases. The first purpose of the Use Cases is to educate the TENA Middleware development team on what type of environment exists in the Range Community in which TENA a
	1.1.3Tips for good stories. In general, there should be a large number of small basic Use Cases. These can then be combined later into more extensive complex Use Cases that can be used for testing. The basic Use Cases should:

	Use Case Template Instructions
	1.2.1Basic information. This section gives the name of the Use Case, a summary, and other important administrative shown below. A sample spreadsheet is at Figure D-1.
	1.2.2TENA applications. This section should contain a list of the TENA applications (running the TENA Middleware) present in the Use Case. Assume for this section that there are no extant TENA-created tools, so include all tools you may need for thes
	1.2.3Basic course of events. This section should contain a temporal description or narrative of the events that occur during the Use Case. The information requirements are shown below. A sample spreadsheet is at Figure D-3.
	1.2.4Information lows. At its core, TENA Middleware is a software infrastructure that facilitates information exchange between TENA applications. Thus, describing the type of information flows and the direction(s) of the flows is critical in order to
	1.2.5Key functionality required of TENA Middleware that this Use Case demonstrates. Each Use Case has an explicit purpose. It is in this section that you state that purpose explicitly so that there is no doubt in our minds what functionality or perform
	1.2.6Object Model information. In this section of the template, please provide information on all of the objects, or class descriptions, that will be needed to support this Use Case. You do not need to fill in the attributes and methods for existing TE
	1.2.7Other relevant information. In this section

	EXAMPLE RADAR USE CASE
	BIBLIOGRAPHY

